The preceeding is a list of machines known to have been made by Bally Manufacturing Co. Click on any machine name to bring up the encyclopedia page for that machine. Hello, Since long time already, we are told, when assembling PC and where motherboard has 4 RAM slots, that we should insert first pair of RAM into 2nd and 4th RAM slot first (or other two assigned RAM slots) and only after that, if we get 2nd pair we should put it into 1st and 3rd slot. Furor in France as North African Radio Station Kicks Hosts Off Air for Interviewing Israeli Ambassador on Peace With Morocco by Ben Cohen. But in a different time slot that slashed their. The Ambassador now does full critical hits on headshots, instead of mini-crits. May 29, 2009 Patch. Fixed the Ambassador not doing damage to buildings. June 8, 2009 Patch. Fixed the Ambassador not shooting enemy sticky bombs. June 23, 2009 Patch. The Ambassador now only crits when fully accurate (after cooldown) and no longer penetrates enemies. At night, test your luck at the hotel’s own casino. Choose from 2,172 slot machines, over 40 poker tables, Blackjack, and so much more! A whole night—or weekend—of fun is right at your fingertips when you stay at Harrah’s! And with 12 restaurants on-site, you and your loved one will never run out of options for any meal.
NVIDIA’s Deep Learning Institute (DLI) delivers practical, hands-on training and certification in AI at the edge for developers, educators, students, and lifelong learners. This is a great way to get the critical AI skills you need to thrive and advance in your career. You can even earn certificates to demonstrate your understanding of Jetson and AI when you complete these free, open-source courses.
NVIDIA offers two certification tracks— Jetson AI Specialist that anyone can complete and Jetson AI Ambassador for educators and instructors.
Want to get started learning about AI? This certification can be completed by anyone, and recognizes your competency in Jetson and AI using a hands-on, project-based assessment. While this track is ideal for advanced learners to build on their existing AI knowledge, beginners can follow the in-depth video tutorials and get up to speed quickly.
Recommended Prerequisites
This certification is for educators and recognizes competency in teaching AI on Jetson using a hands-on, project-based assessment and an interview with the NVIDIA team. This track is ideal for educators or instructors who want to be fully prepared to teach AI to their students.
In addition to certification, we offer freely available curriculum and open-source platforms for educators to build their AI curriculum.
Benefits
Recommended Prerequisites
The requirements for each of the certifications are noted below.
Requirements | Jetson AI Specialist Certification | Jetson AI Ambassador Certification |
---|---|---|
Jetson AI Fundamentals Course | ✔ | ✔ |
Project-Based Assessment | ✔ | ✔ |
Application to the DLI Certified Instructor program and interview with NVIDIA Team | ✔ | |
Teaching or training experience at an academic institution or formal training program | ✔ |
This is the flow for the certifications.
We know how important it is to provide all students with opportunities to impact the future of technology. We’re excited to utilize the NVIDIA Jetson AI Specialist certification materials with our students as they work toward becoming leaders in the fields of AI and robotics.
Christine Nguyen, STEM curriculum director at Boys & Girls Club of Western Pennsylvania
NVIDIA’s Jetson AI Certification materials thoroughly cover the fundamentals with the added advantage of hands-on project-based learning. I believe these benefits provide a great foundation for students to prepare for university robotics courses and compete in robotics competitions.
Jack Silberman PhD, Lecturer, UC San Diego, Jacobs School of Engineering, Contextual Robotics Institute
Jetson AI Fundamentals Tutorial Playlist
Four hours of online content
Open-source content
In this video, we’ll cover how to navigate the Linux system from the terminal and command line. You’ll also see how to move, copy, delete, and edit files. (Courtesy of Paul McWhorter)
In this video lesson, we explore how to code in Python. You’ll learn about printing, user input, for loops, if statements, conditionals, while loops, and arrays. (Courtesy of Paul McWhorter)
Section 1 - NVIDIA Deep Learning Institute’s Getting Started with AI on Jetson Nano courseIn this course, you'll use Jupyter notebooks on your own Jetson Nano to build deep learning classification and regression projects with computer vision models.
Register to the course and follow the videos below that walk you through it.
This episode covers setting up your Jetson Nano for the very first time with JetPack.
This episode covers how to log into your Jetson Nano remotely and run a Docker container to access JupyterLab and the course notebooks. You'll test out your camera in the Hello Camera Jupyter notebook for the first time.
This episode walks through a PyTorch project to train a deep neural network on your Jetson Nano, and experiment with image classification using data you collect with your camera.
This episode covers how to train an image regression deep neural network model to infer X-Y coordinates for specific objects in images you collect with your camera.
JetBot is an open-source AI robot platform that gives makers, students, and enthusiasts everything they need to build creative, fun, smart AI applications. It’s powered by the Jetson Nano Developer Kit, which supports multiple sensors and neural networks in parallel for object recognition, collision avoidance, and more. The Jetbot wiki is here and you can follow the videos below to understand and learn more about its capabilities. You can buy JetBot from one of our partners here. Note: JetBot is an optional component of the Jetson AI Fundamentals Course.
The Jetson Nano JetBot is a great introduction to robotics and deep learning. There are several options in building your own hardware, here we share some valuable tips building yours.
After building your JetBot hardware, we go through the process of setting up the software using a container based approach. Using containers allows us to load all of the necessary deep learning libraries without having to worry about dependencies on other software packages. We also test the motors!
With the software loaded, and the motors running the JetBot is now ready to use deep learning to help avoid collisions when navigating. We gather images and train a model using transfer learning to avoid running into things, and then load it on to the JetBot to test.
Here we train JetBot to follow a path. We gather training data, and then use regression to train a model to predict a good path forward. Once the model is on the JetBot, the JetBot drives along the path.
Hello AI World is a great way to start using Jetson and experience the power of AI. In just a couple of hours, you can have a set of deep learning inference demos up and running for real-time image classification, object detection, and segmentation on your Jetson Developer Kit with the JetPack SDK™ and NVIDIA TensorRT™. You can also collect your own datasets and train your own DNN models onboard Jetson using PyTorch.
Download and run the Hello AI World container on Jetson Nano, test your camera feed, and see how to stream it over the network via RTP.
Code your own Python program for image classification using Jetson Nano and deep learning, then experiment with realtime classification on a live camera stream.
Learn how to train image classification models with PyTorch onboard Jetson Nano, and collect your own classification datasets to create custom models.
Code your own Python program for object detection using Jetson Nano and deep learning, then experiment with realtime detection on a live camera stream.
Learn how to train object detection models with PyTorch onboard Jetson Nano, and collect your own detection datasets to create custom models.
Experiment with fully-convolutional semantic segmentation networks on Jetson Nano, and run realtime segmentation on a live camera stream.
Based on your understanding of the material, you’re required to build and submit an open-source project that uses NVIDIA Jetson and incorporates elements of AI (machine learning or deep learning) with GPU acceleration, along with a video demonstrating the project in action. For example, you could collect your own dataset and train a new DNN model for a specific application, add a new autonomous mode to JetBot, or create a smart home / IoT device using AI - these need not be limited only to topics covered in the course. For inspiration, see the Jetson Community Projects page - the possibilities are endless!
In order to pass the certification, your project will be reviewed based on the following criteria:
Within approximately 10-14 days, you will receive your project scores, and if approved, your appropriate Jetson AI certificate will be delivered.
Jetson AI Specialist | Jetson AI Ambassador |
---|---|
Submit your project below NVIDIA Developer Login Required | Submit your project and DLI Certified Instructor application below NVIDIA Developer Login Required |
Please reach out to us on our community forums.